Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

نویسندگان

  • Tijmen G Euser
  • Philip J Harding
  • Willem L Vos
چکیده

We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Optical Heating Induced Polarization-Dependent Optical Switching in Gold Nanowires

Excitation using femtosecond laser pulses induced ultrafast heating of discontinuous gold nanowires, resulting in transient thermal expansion of the gold nanostructures that constitute the nanowires. The cross-plasmon resulting from the closely arranged gold nanostructures along the nanowires was modified by the change in the small gaps due to the thermal effect. This led to the spectral shift ...

متن کامل

Ultrafast all-optical wavelength conversion in Silicon- on-Insulator waveguides by means of Cross Phase

In this paper we report the ultrafast all-optical wavelength conversion in Silicon-onInsulator (SOI) waveguides. We used a pump-probe setup with 300 femtosecond pulses to demonstrate large temporal phase-shifts, caused by the Kerr effect and free carrier generation. Large wavelength shifts of a 1683nm probe signal have been observed. The wavelength conversion, ranging from 10nm redshifts to 15n...

متن کامل

Optical stark effects in j-aggregate-metal hybrid nanostructures exhibiting a strong exciton-surface-plasmon-polariton interaction.

We report on the observation of optical Stark effects in J-aggregate-metal hybrid nanostructures exhibiting strong exciton-surface-plasmon-polariton coupling. For redshifted nonresonant excitation, pump-probe spectra show short-lived dispersive line shapes of the exciton-surface-plasmon-polariton coupled modes caused by a pump-induced Stark shift of the polariton resonances. For larger coupling...

متن کامل

Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors

This paper discusses free carrier generation by pulsed laser fields as a mechanism to switch the optical properties of semiconductor photonic crystals and bulk semiconductors on an ultrafast time scale. Requirements are set for the switching magnitude, the time-scale, the induced absorption as well as the spatial homogeneity, in particular for silicon at λ = 1550 nm. Using a nonlinear absorptio...

متن کامل

Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures.

We demonstrate experimentally ultrafast all-optical switching in subwavelength nonlinear dielectric nanostructures exhibiting localized magnetic Mie resonances. We employ amorphous silicon nanodisks to achieve strong self-modulation of femtosecond pulses with a depth of 60% at picojoule-per-disk pump energies. In the pump-probe measurements, we reveal that switching in the nanodisks can be gove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 80 7  شماره 

صفحات  -

تاریخ انتشار 2009